Как решать дифференциальные уравнения. Дифференциальные уравнения для "чайников". Примеры решения Примеры нелинейных дифференциальных уравнений

  • Дата: 26.11.2023

Книга является введением в аналитическую теорию нелинейных дифференциальных уравнений и посвящена анализу нелинейных математических моделей и динамических систем на предмет их точного решения (интегрируемости).
Предназначена для студентов, аспирантов и научных сотрудников, интересующихся нелинейными математическими моделями, теорией солитонов, методами построения точных решений нелинейных дифференциальных уравнений, теорией уравнений Пенлеве и их высших аналогов.

Уравнение Кортевега - де Вриза для описания волн на воде.
Явление распространения волн на поверхности воды издавна привлекало к себе внимание исследователей. Это пример волн, который каждый мог наблюдать еще в детстве и который обычно демонстрируется в рамках школьного курса физики. Однако, это довольно сложный тип волн. По выражению Ричарда Фейнмана «более неудачного примера для демонстрации волн придумать трудно, ибо эти волны нисколько не похожи ни на звук, ни на свет; здесь собрались все трудности, которые могут быть в волнах» .

Если рассмотреть бассейн, наполненный водой, и на его поверхности создать некоторое возмущение, то по поверхности воды начнут распространяться волны. Возникновение их объясняется тем, что частицы жидкости, которые находятся вблизи впадины, при создании возмущения будут стремиться заполнить впадину, находясь под действием силы тяжести. Развитие этого явления с течением времени и приведет к распространению волны на воде. Частицы жидкости в такой волне двигаются не вверх-вниз, а приблизительно по окружностям, поэтому волны на воде не являются ни продольными, ни поперечными. Они как бы являются смесью тех и других. С глубиной, радиусы окружностей, по которым двигаются частицы жидкости, уменьшаются до тех пор, пока они не станут равными нулю .

Если анализировать скорость распространения волны на воде, то оказывается, что она зависит от ее амплитуды. Скорость длинных волн пропорциональна корню квадратному из ускорения свободного падения умноженному на сумму амплитуды волны и глубины бассейна. Причиной возникновения таких волн является сила тяжести.

СОДЕРЖАНИЕ
Предисловие 9
Глава 1. НЕЛИНЕЙНЫЕ МАТЕМАТИЧЕСКИЕ МОДЕЛИ 13
1.1 Уравнение Кортевега - де Вриза для описания волн на воде 13
1.2 Простейшие решения уравнения Кортевега - де Вриза 23
1.3 Модель для описания возмущений в цепочке одинаковых масс 26
1.4 Простейшие решения модифицированного уравнения Кортевега - де Вриза 32
1.5 Фазовая и групповая скорости волн 35
1.6 Нелинейное уравнение Шредингера для огибающей волнового пакета 39
1.7 Уединенные волны, описываемые нелинейным уравнением Шредингера и групповой солитон 42
1.8 Уравнение sin-Гордона для описания дислокаций в твердом теле 44
1.9 Простейшие решения уравнения sin-Гордона и топологический солитон 48
1.10 Нелинейное уравнение переноса и уравнение Бюргерса 51
1.11 Модель Хенона - Хейлеса 57
1.12 Система Лоренца 60
1.13 Задачи и упражнения к главе 1 68
Глава 2. АНАЛИТИЧЕСКИЕ СВОЙСТВА ОБЫКНОВЕННЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ 71
2.1 Классификация особых точек функций комплексной переменной 71
2.2 Неподвижные и подвижные особые точки 74
2.3 Уравнения, не имеющие решений с критическими подвижными особыми точками 76
2.4 Задача Ковалевской о волчке 82
2.5 Определение свойства Пенлеве и уравнения Пенлеве 85
2.6 Второе уравнение Пенлеве для описания электрического поля в полупроводниковом диоде 87
2.7 Алгоритм Ковалевской анализа дифференциальных уравнений 91
2.8 Локальные представления решений уравнений типа Пенлеве 96
2.9 Метод Пенлеве для анализа дифференциальных уравнений 100
2.10 Трансцендентная зависимость решений первого уравнения Пенлеве 106
2.11 Неприводимость уравнений Пенлеве 111
2.12 Преобразования Бэклунда для решений второго уравнения Пенлеве 113
2.13 Рациональные и специальные решения второго уравнения Пенлеве 114
2.14 Дискретные уравнения Пенлеве 116
2.15 Асимптотические решения первого и второго уравнений Пенлеве 118
2.16 Линейные представления уравнений Пенлеве 120
2.17 Алгоритм Конта - Форди - Пикеринга для проверки уравнений на свойство Пенлеве 122
2.18 Примеры анализа уравнений методом возмущений Пенлеве 125
2.19 Тест Пенлеве для системы уравнений Хенона-Хейлеса 128
2.20 Точно решаемые случаи системы Лоренца 131
2.21 Задачи и упражнения к главе 2 135
Глава 3. СВОЙСТВА НЕЛИНЕЙНЫХ УРАВНЕНИЙ В ЧАСТНЫХ ПРОИЗВОДНЫХ 138
3.1 Интегрируемые системы 138
3.2 Преобразование Коула - Хопфа для уравнения Бюргерса 141
3.3 Преобразование Миуры и пара Лакса для уравнения Корте-вега - де Вриза 144
3.4 Законы сохранения для уравнения Кортевега - де Вриза 146
3.5 Отображения и преобразования Бэклунда 149
3.6 Преобразования Бэклунда для уравнения sin-Гордона 151
3.7 Преобразования Бэклунда для уравнения Кортевега - де Вриза 153
3.8 Семейство уравнений Кортевега - де Вриза 155
3.9 Семейство уравнений АКНС 157
3.10 Тест Абловица - Рамани - Сигура для нелинейных уравнений в частных производных 160
3.11 Метод Вайса - Табора - Карневейля для анализа нелинейных уравнений 163
3.12 Пенлеве-анализ уравнения Бюргерса методом ВТК 165
3.13 Анализ уравнения Кортевега - де Вриза 168
3.14 Построение пары Лакса для уравнения Кортевега - де Вриза методом ВТК 169
3.15 Анализ модифицированного уравнения Кортевега - де Вриза 171
3.16 Усеченные разложения, как отображения решений нелинейных уравнений 172
3.17 Инвариантный пенлеве-анализ 174
3.18 Применение инвариантного пенлеве-анализа для нахождения пар Лакса 176
3.19 Соотношения между основными точно решаемыми нелинейными уравнениями 179
3.20 Семейство уравнений Бюргерса 187
3.21 Задачи и упражнения к главе 3 189
Глава 4. ТОЧНЫЕ РЕШЕНИЯ НЕЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ 193
4.1 Применение усеченных разложений для построения частных решений неинтегрируемых уравнений 193
4.2 Точные решения уравнения Бюргерса - Хаксли 197
4.3 Частные решения уравнения Бюргерса - Кортевега - де Вриза 205
4.4 Уединенные волны, описываемые уравнением Курамото - Сивашинского 208
4.5 Кноидальные волны, описываемые уравнением Курамото - Сивашинского 215
4.6 Частные решения простейшего нелинейного волнового уравнения пятого порядка 217
4.7 Точные решения нелинейного уравнения пятого порядка для описания волн на воде 220
4.8 Решения уравнения Кортевега - де Вриза пятого порядка в переменных бегущей волны 230
4.9 Точные решения модели Хенона - Хейлеса 235
4.10 Метод нахождения рациональных решений некоторых точно решаемых нелинейных уравнений 237
4.11 Задачи и упражнения к главе 4 241
Глава 5. ВЫСШИЕ АНАЛОГИ УРАВНЕНИЙ ПЕНЛЕВЕ И ИХ СВОЙСТВА 244
5.1 Анализ уравнений четвертого порядка на свойство Пенлеве 244
5.2 Уравнения четвертого порядка, прошедшие тест Пенлеве 251
5.3 Трансценденты, определяемые нелинейными уравнениями четвертого порядка 253
5.4 Локальные представления решений для уравнений четвертого порядка 258
5.5 Асимптотические свойства трансцендент уравнений четвертого порядка 264
5.6 Семейства уравнений с решениями в виде трансцендент 266
5.7 Пары Лакса для уравнений четвертого порядка 271
5.8 Обобщения уравнений Пенлеве 277
5.9 Преобразования Бэклунда для высших аналогов уравнений Пенлеве 284
5.10 Рациональные и специальные решения высших аналогов уравнений Пенлеве 291
5.11 Дискретные уравнения, соответствующие высшим аналогам уравнений Пенлеве 295
5.12 Задачи и упражнения к главе 5 304
ГЛАВА 6. МЕТОД ОБРАТНОЙ ЗАДАЧИ И МЕТОД ХИРОТЫ ДЛЯ РЕШЕНИЯ УРАВНЕНИЯ КОРТЕВЕГА - ДЕ ВРИЗА 306
6.1 Задача Коши для уравнения Кортевега - де Вриза 306
6.2 Прямая задача рассеяния 307
6.3 Интегральный вид стационарного уравнения Шредингера 313
6.4 Аналитические свойства амплитуды рассеяния 315
6.5 Уравнение Гельфанда - Левитана - Марченко 318
6.6 Интегрирование методом обратной задачи рассеяния уравнения Кортевега - де Вриза 321
6.7 Решение уравнения Кортевега - де Вриза в случае безотражательных потенциалов 323
6.8 Оператор Хироты и его свойства 326
6.9 Нахождение солитонных решений уравнения Кортевега - де Вриза методом Хироты 327
6.10 Метод Хироты для модифицированного уравнения Кортевега - де Вриза 331
6.11 Задачи и упражнения к главе 6 333
Литература 337
Предметный указатель.

Дифференциальные уравнения - раздел математики, изучающий теорию и способы решения уравнений, содержащих искомую функцию и ее производные различных порядков одного аргумента (обыкновенные дифференциальные) или нескольких аргументов (дифференциальные уравнения в частных производных). Дифференциальные уравнения широко используются на практике, в частности для описания переходных процессов.

Теория дифференциальных уравнений - раздел математики, занимающийся изучением дифференциальных уравнений и связанных с ними задач. Их результаты применяются во многих естественных науках, особенно широко - в физике.

Проще говоря, дифференциальное уравнение - это уравнение, в котором неизвестной величиной является некоторая функция.При этом, в самом уравнении участвует не только неизвестная функция, но и различные ее производные. Дифференциальным уравнением описывается связь между неизвестной функцией и ее производными. Такие связи отыскиваются в различных областях знаний: в механике, физике, химии, биологии, экономике и др.

Различают обыкновенные дифференциальные уравнения и дифференциальные уравнения в частных производных. Более сложными являются интегро-дифференциальные уравнения.

Сначала дифференциальные уравнения возникли из задач механики, в которых участвовали координаты тел, их скорости и ускорения, рассматриваемые как функции от времени.

Дифференциальное уравнение называется интегрируемых в квадратурах , если задачу нахождения всех развязок связей можно свести к вычислению конечного числа интегралов от известных функций и простых алгебраических операций.

История

Леонард Эйлер

Жозеф-Луи Лагранж

Пьер-Симон Лаплас

Жозеф Лиувилль

Анри Пуанкаре

Дифференциальные уравнения изобретены Ньютоном (1642-1727). Ньютон считал это свое изобретение настолько важным, что зашифровал его в виде анаграммы, смысл которой в современных терминах можно свободно передать так: «законы природы выражаются дифференциальными уравнениями».

Основным аналитическим достижением Ньютона было разложение всевозможных функций в степенные ряды (смысл второй, длинной анаграммы Ньютона в том, что для решения любого уравнения нужно подставить в уравнение ряд и приравнять члены одинакового степени). Особое значение имела здесь открытая им формула бинома Ньютона (разумеется, не только с целыми показателями, для которых формулу знал, например, Виет (1540-1603), но и, что особенно важно, с дробными и отрицательными показателями). Ньютон разложил в «ряды Тейлора» все основные элементарные функции Это, вместе с составленной им таблице первобытных (которая перешла в почти неизменном виде в современные учебники анализа), позволяло ему, по его словам, сравнивать площади любых фигур «за половину четверти часа».

Ньютон указывал, что коэффициенты его рядов пропорциональны последовательным производным функции, но не останавливался на этом подробно, поскольку он справедливо считал, что все вычисления в анализе удобнее проводить не с помощью кратных дифференцировок, а путем вычисления первых членов ряда. Для Ньютона связь между коэффициентами ряда и производными был скорее средством вычисления производных, чем средством составления ряда. Одним из важнейших достижений Ньютона является его теория солнечной системы, изложенная в «Математических принципах натуральной философии» («Principia») без помощи математического анализа. Обычно считают, что Ньютон открыл с помощью своего анализа закон всемирного тяготения. На самом деле Ньютону (1680) принадлежит лишь доказательство эллиптичности орбит в поле притяжения по закону обратных квадратов: сам этот закон был указан Ньютону Гуком (1635-1703) и, пожалуй, угадывался еще несколькими учеными.

Из огромного числа работ XVIII века по дифференциальным уравнениям выделяются работы Эйлера (1707-1783) и Лагранжа(1736-1813). В этих работах была прежде развита теория малых колебаний, а следовательно - теория линейных систем дифференциальных уравнений; попутно возникли основные понятия линейной алгебры (собственные числа и векторы в n-мерном случае). Характеристическое уравнение линейного оператора долго называли секулярным, поскольку именно из такого уравнения определяются секулярные (возрастные, т.е. медленные по сравнению с годовым движением) возмущения планетных орбит согласно теории малых колебаний Лагранжа. Вслед за Ньютоном Лаплас и Лагранж, а позже Гаусс (1777-1855) развивают также методы теории возмущений.

Когда была доказана неразрешимость алгебраических уравнений в радикалах, Жозеф Лиувилль (1809-1882) построил аналогичную теорию для дифференциальных уравнений, установив невозможность решения ряда уравнений (в частности таких классических, как линейные уравнения второго порядка) в элементарных функциях и квадратурах. Позже Софус Ли (1842-1899), анализируя вопрос об интегрировании уравнений в квадратурах, пришел к необходимости детально исследовать группы дифеоморфизмив (получившие впоследствии имя групп Ли) - так по теории дифференциальных уравнений возникла одна из самых плодотворных областей современной математики, дальнейшее развитие которой было тесно связано совсем с другими вопросами (алгебры Ли еще раньше рассматривали Симеон-Дени Пуассон (1781-1840) и, особенно, Карл Густав Якоб Якоби (1804-1851)).

Новый этап развития теории дифференциальных уравнений начинается с работ Анри Пуанкаре (1854-1912), созданная им «качественная теория дифференциальных уравнений» вместе с теорией функций комплексных переменных привела к основанию современной топологии. Качественная теория дифференциальных уравнений, или, как теперь ее чаще называют, теория динамических систем, сейчас развивается наиболее активно и имеет наиболее важные применения теории дифференциальных уравнений в естествознании.

Обыкновенные дифференциальные уравнения

Обыкновенные дифференциальные уравнения - это уравнения вида F (t , x , x ", x "",..., x (n )) = 0 , где x = x (t ) - неизвестная функция (возможно, вектор-функция; в таком случае часто говорят о системе дифференциальных уравнений), зависящая от переменной времени t , штрих означает дифференцирование по t . Число n называется порядком дифференциального уравнения.

Решением (или решением) дифференциального уравнения называется функция, дифференцируется n раз, и удовлетворяет уравнению во всех точках своей области определения. Обычно существует целое множество таких функций, и для выбора одной из развязок нужно наложить на нее дополнительные условия: например, требовать, чтобы решения принимал в определенной точке определенное значение.

Основные задачи и результаты теории дифференциальных уравнений: существование и единственность решения различных задач для ОДУ, методы розьязання простых ОДУ, качественное исследование решений ОДУ без нахождения их явного вида.

Дифференциальные уравнения в частных производных

Дифференциальные уравнения в частных производных - это уравнения, содержащие неизвестные функции от нескольких переменных и их частных производных.

Общий вид таких уравнений можно представить в виде:

,

где - независимые переменные, а - функция этих переменных.

Нелинейные дифференциальные уравнения

Нелинейные дифференциальные уравнения - раздел математики, изучающий теорию и способы решения нелинейных уравнений, содержащих искомую функцию и ее производные различных порядков одного аргумента (обычные нелинейные дифференциальные) или нескольких аргументов (нелинейные дифференциальные уравнения в частных производных). Дифференциальные уравнения широко используются на практике, в частности для описания переходных процессов.

Теория нелинейных дифференциальных уравнений - раздел математики, занимающийся изучением дифференциальных уравнений и связанных с ними задач. Их результаты применяются во многих естественных науках: механике, физике, термоупругости, оптике.

Нелинейное дифференциальное уравнение - это уравнение, в котором неизвестной величиной является некоторая функция. В самом дифференциальном уравнении участвует не только неизвестная функция, но и различные ее производные в нелинейном виде. Нелинейным дифференциальным уравнением описывается связь между неизвестной функцией и ее производными. Такие связи отыскиваются в различных областях знаний: в механике, физике, химии, биологии, экономике и др..

Различают обычные нелинейные дифференциальные уравнения и нелийни дифференциальные уравнения в частных производных.

Нелинейные дифференциальные уравнения возникли из задач нелинейной механики, в которых участвовали координаты тел, их скорости и ускорения, рассматриваемые как функции от времени.

Примеры

  • Второй закон Ньютона можно записать в форме дифференциального уравнения
,

где m - масса тела, x - его координата, F (x , t ) - сила, действующая на тело с координатой x в момент времени t . Его решением является траектория движения тела под действием указанной силы.

  • Колебания струны задается уравнением
,

где u = u (x , t ) - отклонение струны в точке с координатой x в момент времени t , параметр a задает свойства струны.

Дифференциальное уравнение (обыкновенное или с частными производными), в к-рое по крайней мере одна из производных неизвестной функции (включая и производную нулевого порядка - саму неизвестную функцию) входит нелинейно. Этот термин обычно употребляют, когда хотят специально подчеркнуть, что рассматриваемое дифференциальное уравнение Н=0 не является линейным, т. е. его левая часть Нне представляет собой линейную форму от производных неизвестной функции с коэффициентами, зависящими только от независимых переменных.

Иногда под Н. д. у. понимается наиболее общее уравнение определенного вида. Напр., нелинейным обыкновенным дифференциальным уравнением 1-го порядка наз. уравнение с произвольной функцией ; при этом линейное обыкновенное дифференциальное уравнение 1-го порядка соответствует частному случаю

Н. д. у. с частными производными 1-го порядка для неизвестной функции z от. пнезависимых переменных имеет вид

где F- произвольная функция своих аргументов; в случае

такое уравнение наз. квазилинейным, а в случае

Линейным.

  • - ур-ние, содержащее неизвестную ф-цию под знаками операций дифференцирования и интегрирования...

    Физическая энциклопедия

  • - нелинейное дифференциальное ур-ние в частных производных где -комплекснозначная ф-ция. Вещественный параметр входящий в ур-ние, играет роль константы связи...

    Физическая энциклопедия

  • - обыкновенное дифференциальное уравнение. Эти уравнения возникли в связи с исследованиями Н. Абеля по теории эллиптич. функций. А. д. у. 1-го рода представляет естественное обобщение Риккати уравнения...

    Математическая энциклопедия

  • - дифференциальное уравнение в том или ином абстрактном пространстве или дифференциальное уравнение с операторными коэффициентами...

    Математическая энциклопедия

  • - уравнение, в к-ром неизвестной является функция от одного независимого переменного, причем в это уравнение входят не только сама неизвестная функция, но и ее производные различных порядков. Термин...

    Математическая энциклопедия

  • - приближенные методы решения - методы получения аналитич...

    Математическая энциклопедия

  • - интегральное уравнение, содержащее неизвестную функцию нелинейно...

    Математическая энциклопедия

  • - численные методы решения - итерационные методы решения нелинейных уравнений...

    Математическая энциклопедия

  • - уравнение вида где есть мультииндекс с целыми неотрицательными где. Аналогично определяется Н. у....

    Математическая энциклопедия

  • - ур-ние, в к-ром неизвестные величины входят не только линейным образом; противопоставляется линейному уравнению...

    Большой энциклопедический политехнический словарь

  • - уравне ние, связывающее искомую функцию, её производные и независимые переменные, напр. dy = 2xdx. Решением или интегралом Д. у. наз. ф-ция, при подстановке к-рой в Д. у. последнее обращается в тождество...

    Естествознание. Энциклопедический словарь

  • - Уравнение, определяющее зависимость переменной от ее собственных производных с учетом времени, которое рассматривается как непрерывная переменная...

    Экономический словарь

  • - см. соотв. статью...

    Энциклопедический словарь Брокгауза и Евфрона

  • - Бернулли уравнение, дифференциальное уравнение 1-го порядка вида: dy/dx + Py = Qya, где Р, Q ‒ заданные непрерывные функции от x; a ‒ постоянное число...

    Большая Советская энциклопедия

  • - ДИФФЕРЕНЦИАЛЬНОЕ уравнение - уравнение, связывающее искомую функцию, ее производные и независимые переменные, напр. dy = 2xdx...
  • - ИНТЕГРО-ДИФФЕРЕНЦИАЛЬНОЕ уравнение - уравнение, содержащее неизвестную функцию под знаком интеграла и под знаком производной...

    Большой энциклопедический словарь

"НЕЛИНЕЙНОЕ ДИФФЕРЕНЦИАЛЬНОЕ УРАВНЕНИЕ" в книгах

Уравнение теплопроводности

Из книги Истории давние и недавние автора Арнольд Владимир Игоревич

Уравнение теплопроводности Провалился под лёд я без лыж в первые дни мая, переходя по льду входящее теперь в черту Москвы стометровое озеро «Миру - мир». Началось с того, что лёд подо мной стал слегка прогибаться, и под кедами показалась вода. Вскоре я понял, что форма льда

Раздел 3 Нелинейное прошлое города

Из книги автора

Раздел 3 Нелинейное прошлое города

Узор «Уравнение»

Из книги Обувь для дома своими руками автора Захаренко Ольга Викторовна

Узор «Уравнение» Этот узор вяжется так:1-й и 13-й ряд: *2 п. светлой нити, 2 п. темной нити, 1 п. светлой нити, 1 п. темной нити, 3 п. светлой нити, 1 п. темной нити, 1 п. светлой нити, 2 п. темной нити, 1 п. светлой нити*, повторите от * до *; Узор «Уравнение»2-й и все четные ряды: выполняйте все

Принятие решений Нелинейное мышление – это нормально

Из книги Развитие лидеров. Как понять свой стиль управления и эффективно общаться с носителями иных стилей автора Адизес Ицхак Калдерон

Принятие решений Нелинейное мышление – это нормально A мыслит линейно. Он не понимает, что логика изложения зависит от цели высказывания и порой C может опережать B.A страшно огорчается, если дискуссия отклоняется от намеченного курса. Для него это слишком сложно:

Линейное и нелинейное мышление

Из книги Жизнь без границ. Строение и Законы Дуальной Вселенной автора Жикаренцев Владимир Васильевич

Линейное и нелинейное мышление Мы привыкли мыслить линейно. Что такое линейное мышление? Это когда мы свои мысли и действия выстраиваем последовательно, друг за другом, это логическое мышление. Самый хороший пример линейного взаимодействия – это книги. Буквы, следуя

3. Третий критерий: дифференциальное и единичное

Из книги Марсель Пруст и знаки автора Делёз Жиль

3. Третий критерий: дифференциальное и единичное Так в чем же состоят эти символические элементы, или позиционные единицы? Вернемся к лингвистической модели. То, что отлично и от звуковых частей слова, и от связанных с ним образов и понятий, называется фонемой. Фонема -

Уравнение Шредингера; уравнение Дирака

Из книги Новый ум короля [О компьютерах, мышлении и законах физики] автора Пенроуз Роджер

Уравнение Шредингера; уравнение Дирака Выше в этой главе я уже упоминал об уравнении Шредингера, которое является хорошо определенным детерминистским уравнением, во многих отношениях аналогичным уравнениям классической физики. Правила гласят, что до тех пор, пока над

11. Дифференциальное исчисление и просветление

Из книги Квантовый ум [Грань между физикой и психологией] автора Минделл Арнольд

11. Дифференциальное исчисление и просветление Уже в течение, по меньшей мере, двадцати пяти столетий математика составляет неотъемлемую часть интеллектуального воспитания и наследия человека. Однако за этот длительный период времени не было достигнуто общего

ДИФФЕРЕНЦИАЛЬНОЕ И ИНТЕГРАЛЬНОЕ СЧИСЛЕНИЕ

Из книги 100 великих научных открытий автора Самин Дмитрий

ДИФФЕРЕНЦИАЛЬНОЕ И ИНТЕГРАЛЬНОЕ СЧИСЛЕНИЕ Задолго до Ньютона и Лейбница многие философы и математики занимались вопросом о бесконечно малых, но ограничились лишь самыми элементарными выводами. Еще древние греки употребляли в геометрических исследованиях способ

Бернулли уравнение (дифференциальное)

Из книги Большая Советская Энциклопедия (БЕ) автора БСЭ

Дифференциальное исчисление

Из книги Большая Советская Энциклопедия (ДИ) автора БСЭ

Самосопряжённое дифференциальное уравнение

Из книги Большая Советская Энциклопедия (СА) автора БСЭ

Уравнение

Из книги Большая Советская Энциклопедия (УР) автора БСЭ

Решение 23: нелинейное и комплектное ценообразование

Из книги Как преодолеть кризис. 33 эффективных решения для вашей компании автора Хэмен Саймон

Решение 23: нелинейное и комплектное ценообразование Современные, надежные методы снижения цен, эффективные во время кризиса, – это нелинейное и комплектное ценообразование. Есть еще один вариант – скидка на количество клиентов. При нелинейном ценообразовании цена

Нелинейное развитие

Из книги Развитие сбалансированной чувствительности: практические буддийские упражнения для повседневной жизни (дополненное второе издание) автора Берзин Александр

Нелинейное развитие Люди, пытающиеся контролировать все в своей жизни, зачастую ищут простые, почти механические методы для того, чтобы справиться с эмоциональными проблемами. Они полагают, что простого знания того, как применить метод, достаточно для получения

Дифференциальное уравнение уравнение связывающее значение некоторой неизвестной функции в некоторой точке и значение её производных различных порядков в той же точке. Дифференциальное уравнение содержит в своей записи неизвестную функцию её производные и независимые переменные; однако не любое уравнение содержащее производные неизвестной функции является дифференциальным уравнением. Нелинейное дифференциальное уравнение дифференциальное уравнение обыкновенное или с частными производными в которое по крайней мере одна...


Поделитесь работой в социальных сетях

Если эта работа Вам не подошла внизу страницы есть список похожих работ. Так же Вы можете воспользоваться кнопкой поиск


ПГУ им. Т.Г. Шевченко

Курсовая работа

Виды нелинейных дифференциальных уравнений 1-го порядка

Выполнил:

Студент 211 группы

Специальности «ИКТиСС»

Бирт Игорь Андреевич

Проверил:

Тирасполь 2014 год

1. Введение 3 стр.

2. Виды дифференциальных уравнений 4 стр.

3. Практическая часть 8 стр.

4. Литература 20 стр.

  1. ВВЕДЕНИЕ

Дифференциальное уравнение — уравнение, связывающее значение некоторой неизвестной функции в некоторой точке и значение её производных различных порядков в той же точке. Дифференциальное уравнение содержит в своей записи неизвестную функцию, её производные и независимые переменные; однако не любое уравнение, содержащее производные неизвестной функции, является дифференциальным уравнением.

Порядок дифференциального уравнения — наибольший порядок производных, входящих в него.

Процесс решения дифференциального уравнения называется интегрированием.

Все дифференциальные уравнения можно разделить на линейные и не линейные.

Нелинейное дифференциальное уравнение - дифференциальное уравнение (обыкновенное или с частными производными ), в к ото рое по крайней мере о дна из производных неизвестной функции (включая и производную нулевого порядка - саму неизвестную функцию ) входит нелинейно .

Иногда под Н.Д.У. понимается наиболее общее уравнение определенного вида. Напр ., нелинейнымобыкновенным дифференциальным уравнением 1 - го порядка наз . уравнение с произвольной

функцией при этом линейное обыкновенное дифференциальное уравнение 1-го порядка соответствует частному случаю

Н . д . у . с частными производными 1-го порядка для неизвестной функции z

от независимых переменных имеет вид:

где F - произвольная функция своих аргументов ;

Виды нелинейных дифференциальных уравнений 1-го порядка:

Уравнения с разделенными переменными

П1.


Общий интеграл

П2.


Общий интеграл


Уравнение в полных дифференциалах

Где

Существует такая функция u(x, y) , что


Общий интеграл уравнения в полных дифференциалах u(x, y) = C.

Функция u может быть представлена в виде

Однородное уравнение

где P(x, y) , Q(x, y) - однородные функции одной и той же степени

Подстановка y = ux , dy = xdu + udx переводит однородное уравнение в линейное относительно функции u :

Уравнение вида

1. Если прямые и пересекаются в точке

(x 0 ; y 0 ), то замена приводит его к однородному уравнению

2. Если прямые и параллельны, то замена приводит к уравнению с разделяющимися переменными

Уравнение Бернулли

Подстановкой сводится к линейному


Уравнение Риккати

Если известно какое-либо из решений, то уравнение сводится к

линейному подстановкой.


Уравнение Лагранжа

Дифференцируя по x и полагая y" = p , приходим к линейному уравнению относительно x как функции p :


Уравнение Клеро

Частный случай уравнения Лагранжа.

ПРАКТИЧЕСКАЯ ЧАСТЬ.

Уравнения Риккати

Решить дифференциальное уравнение

y" = y + y 2 + 1.

Решение.

Данное уравнение является простейшим уравнением Риккати с постоянными коэффициентами. Переменные x, y здесь легко разделяются, так что общее решение уравнения определяется в следующем виде:

Решить уравнение Риккати

Решение

Будем искать частное решение в форме:

Подставляя это в уравнение, находим:

Получаем квадратное уравнение для c:

Мы можем выбрать любое значение c. Например, пусть c = 2. Теперь, когда частное решение известно, сделаем замену:

Снова подставим это в исходное уравнение Риккати:

Как видно, мы получили уравнение Бернулли с параметром m = 2. Сделаем еще одну замену:

Разделим уравнение Бернулли на z2 (полагая, что z ≠ 0) и запишем его через переменную v:

Последнее уравнение является линейным и легко решается с помощью интегрирующего множителя:

Общее решение линейного уравнения определяется функцией

Теперь мы будем последовательно возвращаться к предыдущим переменным. Так как z = 1/v, то общее решение для z записывается следующим образом:

Следовательно,

Можно переименовать константу: 3C = C1 и записать ответ в виде

где C1 − произвольное действительное число.

Уравнения Бернули

Решение.

Данное уравнение является уравнением Бернулли с дробным параметром

m = 1/2. Его можно свести к линейному дифференциальному уравнению с помощью замены

Производная новой функции z (x ) будет равна

Разделим исходное уравнение Бернулли на

Аналогично другим примерам на этой веб-странице, корень y = 0 также является тривиальным решением дифференциального уравнения. Поэтому можно записать:

Заменяя y на z , находим:

Итак, мы имеем линейное уравнение для функции z (x ). Интегрирующий множитель здесь будет равен

Выберем в качестве интегрирующего множителя функцию u (x ) = x . Можно проверить, что после умножения на u (x ) левая часть уравнения будет представлять собой производную произведения z (x ) u (x ):

Тогда общее решение линейного дифференциального уравнения будет определяться выражением:

Возвращаясь к исходной функции y (x ), записываем решение в неявной форме:

Итак, полный ответ имеет вид:

Уравнения с разделяющимися переменными

Найти все решения дифференциального уравнения

y" = −xe y .

Решение.

Преобразуем уравнение следующим образом:

Очевидно, что деление на e y не приводит к потере решения, поскольку e y > 0. После интегрирования получаем

Данный ответ можно выразить в явном виде:

В последнем выражении предполагается, что константа C > 0, чтобы удовлетворить области определения логарифмической функции.

Найти частное решение уравнения, при

y(0) = 0.

Решение.

Перепишем уравнение в следующем виде:

Разделим обе части на 1 + e x :

Поскольку 1 + e x > 0, то при делении мы не потеряли никаких решений. Интегрируем полученное уравнение:

Теперь найдем константу C из начального условия y(0) = 0.

Следовательно, окончательный ответ имеет вид:

Уравнение Клеро

y = xy" + (y") 2

Решение

Полагая y" = p, его можно записать в виде

Продифференцировав по переменной x, находим:

Заменим dy на pdx:

Приравнивая первый множитель к нулю, получаем:

Теперь подставим это во второе уравнение:

В результате получаем общее решение заданного уравнения Клеро. Графически, это решение представляется в виде однопараметрического семейства прямых. Приравнивая нулю второй сомножитель, находим еще одно решение:

Это уравнение соответствует особому решению дифференциального уравнения и в параметрической форме записывается как

Исключая p из системы, получаем следующее уравнение интегральной кривой:

С геометрической точки зрения, парабола

является огибающей семейства прямых, определяемых общим решением.

Найти общее и особое решения дифференциального уравнения

Решение.

Введем параметр y" = p:

Дифференцируя обе части уравнения по переменной x, получаем:

Поскольку dy = pdx, то можно записать:

Рассмотрим случай dp = 0. Тогда p = C. Подставляя это в уравнение, находим общее решение:

Графически это решение соответствует однопараметрическому семейству прямых линий.

Второй случай описывается уравнением

Найдем соответствующее параметрическое выражение для y:

Параметр p можно исключить из формул для x и y. Возводя последние уравнения в квадрат и складывая их, получаем:

Полученное выражение является уравнением окружности радиусом 1, расположенным в начале координат. Таким образом, особое решение представляется единичной окружностью в плоскости xy, которая является огибающей для семейства прямых линий.

ЛИТЕРАТУРА

  1. Н.С. Пискунов "Дифференциальное и интегральное исчисление", том второй, издательство "Наука", Москва 1985
  1. В. Ф. Зайцев, А. Д. Полянин. Справочник по обыкновенным дифференциальным уравнениям. М.: Физматлит, 2001.
  1. К.Н. Лунгу, В.П. Норин и др. "Сборник задач по высшей математике", второй курс, Москва: Айрис-пресс, 2007
  1. Э. Камке. Справочник по обыкновенным дифференциальным уравнениям. М.: Наука, 1976.
  1. Источники информации в интернете.

PAGE \* MERGEFORMAT 19

Другие похожие работы, которые могут вас заинтересовать.вшм>

13541. Основные типы дифференциальных уравнений первого порядка 113.05 KB
Рассмотрим уравнение XxdxYydy=0 1 в котором коэффициент при dx зависит только от x а коэффициент при dy – только от y. Такое уравнение называется уравнением с разделенными переменными. Тогда уравнение 1 можно переписать так. К уравнению с разделенными переменными легко приводится уравнение вида p1xp2ydx q1xq2ydy = 0 в котором коэффициенты при dx и dy представляют собой произведения функции от x на функцию от y.
13536. Элементы общей теории обыкновенных дифференциальных уравнений первого порядка 129.39 KB
Такие уравнения называются дифференциальными. Аналогичное исследование с помощью дифференциального уравнения можно провести и для изучения экстратока замыкания. Для того чтобы найти эту функцию отделим переменные t и x друг от друга собрав члены с x в левой части уравнения а члены с t в правой: .
19450. Численные методы решения нелинейных уравнений 156.56 KB
Видим что обе части не являются алгебраическими и содержат тригонометрические формулы значит это трансцендентное уравнение для решения которого не существует формул для отыскания корней. Построим график для того чтобы примерно определить промежутки содержащие корни см. Для этого реализуем метод половинного деления. Для того чтобы использовать эту функцию напишем скрипт который будет выводить первые пять корней отмечать их на графике а также использовать встроенную функцию для проверки решения и вычислять резонансные частоты стержня.
6217. Методы нахождения корней системы нелинейных уравнений 284.94 KB
Методы нахождения корней системы нелинейных уравнений. Для системы из 2 уравнений это можно сделать графически но для систем высоких порядков удовлетворительных методов отделения корней не существует. Проблема решения системы 1 возникает при решении многих прикладных задач например поиска безусловного экстремума функций многих переменных с помощью необходимых условий...
1726. Вычисление корней нелинейных уравнений методом Ньютона 123.78 KB
Целью данной курсовой работы является изучение и реализация в программном продукте решения нелинейных уравнений при помощи метода Ньютона. Первый раздел теоретический и содержит общие сведения о методе Ньютона.
19491. Решение дифференциальных уравнений в частных производных 267.96 KB
Экранированная двухпроводная линия РАСЧЕТ Для выполнения расчета необходимо запустить PDE Toolbox для этого необходимо выполнить команду pdetool в рабочей области MTLB.– Двухмерная модель проводящей линии Сначала из геометрических примитивов строиться модель системы см...
19443. Методы решения обыкновенных дифференциальных уравнений 72.36 KB
Для начала рассмотрим метод Эйлера так как является самым простым из существующих численных методов решения дифференциальных уравнений и в конце сравним результаты. Метод Эйлера является явным одношаговым методом первого порядка точности основанном на аппроксимации интегральной кривой кусочно-линейной функцией...
6215. Численные методы решения обыкновенных дифференциальных уравнений 1.42 MB
Порядком обыкновенного дифференциального уравнения называется порядок старшей производной от искомой функции. Общим интегралом уравнения. неявным образом причем число постоянных интегрирования равно порядку уравнения. Общим решением обыкновенного дифференциального уравнения называется функция.
13538. Понятие о численных методах решения обыкновенных дифференциальных уравнений 153.35 KB
Недостатки метода Эйлера 4. Идея метода Эйлера очень проста. В результате приходим к приближённому уравнению: Поскольку по определению у= окончательно имеем следующее уравнение являющееся основой метода Эйлера: 8 Конечно это уравнение является лишь приближённым и мы надеемся что чем меньше величина шага h тем оно будет более точным уменьшается локальная погрешность метода то есть погрешность на одном его шаге.
3551. Визуализация численных методов. Решение обыкновенных дифференциальных уравнений 143.97 KB
Дифференциальными уравнениями называются уравнения, связывающее значение некоторой неизвестной функции в некоторой точке и значение её производных различных порядков в той же точке. Первые дифференциальные уравнения возникли из задач механики...

В некоторых задачах физики непосредственную связь между величинами, описывающими процесс, установить не удается. Но существует возможность получить равенство, содержащее производные исследуемых функций. Так возникают дифференциальные уравнения и потребность их решения для нахождения неизвестной функции.

Эта статья предназначена тем, кто столкнулся с задачей решения дифференциального уравнения, в котором неизвестная функция является функцией одной переменной. Теория построена так, что с нулевым представлением о дифференциальных уравнениях, вы сможете справиться со своей задачей.

Каждому виду дифференциальных уравнений поставлен в соответствие метод решения с подробными пояснениями и решениями характерных примеров и задач. Вам остается лишь определить вид дифференциального уравнения Вашей задачи, найти подобный разобранный пример и провести аналогичные действия.

Для успешного решения дифференциальных уравнений с Вашей стороны также потребуется умение находить множества первообразных (неопределенные интегралы) различных функций. При необходимости рекомендуем обращаться к разделу .

Сначала рассмотрим виды обыкновенных дифференциальных уравнений первого порядка, которые могут быть разрешены относительно производной, далее перейдем к ОДУ второго порядка, следом остановимся на уравнениях высших порядков и закончим системами дифференциальных уравнений.

Напомним, что , если y является функцией аргумента x .

Дифференциальные уравнения первого порядка.

    Простейшие дифференциальные уравнения первого порядка вида .

    Запишем несколько примеров таких ДУ .

    Дифференциальные уравнения можно разрешить относительно производной, произведя деление обеих частей равенства на f(x) . В этом случае приходим к уравнению , которое будет эквивалентно исходному при f(x) ≠ 0 . Примерами таких ОДУ являются .

    Если существуют значения аргумента x , при которых функции f(x) и g(x) одновременно обращаются в ноль, то появляются дополнительные решения. Дополнительными решениями уравнения при данных x являются любые функции, определенные для этих значений аргумента. В качестве примеров таких дифференциальных уравнений можно привести .

Дифференциальные уравнения второго порядка.

    Линейные однородные дифференциальные уравнения второго порядка с постоянными коэффициентами .

    ЛОДУ с постоянными коэффициентами является очень распространенным видом дифференциальных уравнений. Их решение не представляет особой сложности. Сначала отыскиваются корни характеристического уравнения . При различных p и q возможны три случая: корни характеристического уравнения могут быть действительными и различающимися , действительными и совпадающими или комплексно сопряженными . В зависимости от значений корней характеристического уравнения, записывается общее решение дифференциального уравнения как , или , или соответственно.

    Для примера рассмотрим линейное однородное дифференциальное уравнение второго порядка с постоянными коэффициентами . Корнями его характеристического уравнения являются k 1 = -3 и k 2 = 0 . Корни действительные и различные, следовательно, общее решение ЛОДУ с постоянными коэффициентами имеет вид

    Линейные неоднородные дифференциальные уравнения второго порядка с постоянными коэффициентами .

    Общее решение ЛНДУ второго порядка с постоянными коэффициентами y ищется в виде суммы общего решения соответствующего ЛОДУ и частного решения исходного неоднородного уравнения, то есть, . Нахождению общего решения однородного дифференциального уравнения с постоянными коэффициентами , посвящен предыдущий пункт. А частное решение определяется либо методом неопределенных коэффициентов при определенном виде функции f(x) , стоящей в правой части исходного уравнения, либо методом вариации произвольных постоянных.

    В качестве примеров ЛНДУ второго порядка с постоянными коэффициентами приведем

    Разобраться в теории и ознакомиться с подробными решениями примеров мы Вам предлагаем на странице линейные неоднородные дифференциальные уравнения второго порядка с постоянными коэффициентами .

    Линейные однородные дифференциальные уравнения (ЛОДУ) и линейные неоднородные дифференциальные уравнения (ЛНДУ) второго порядка .

    Частным случаем дифференциальных уравнений этого вида являются ЛОДУ и ЛНДУ с постоянными коэффициентами.

    Общее решение ЛОДУ на некотором отрезке представляется линейной комбинацией двух линейно независимых частных решений y 1 и y 2 этого уравнения, то есть, .

    Главная сложность заключается именно в нахождении линейно независимых частных решений дифференциального уравнения этого типа. Обычно, частные решения выбираются из следующих систем линейно независимых функций:

    Однако, далеко не всегда частные решения представляются в таком виде.

    Примером ЛОДУ является .

    Общее решение ЛНДУ ищется в виде , где - общее решение соответствующего ЛОДУ, а - частное решение исходного дифференциального уравнения. О нахождении мы только что говорили, а можно определить, пользуясь методом вариации произвольных постоянных.

    В качестве примера ЛНДУ можно привести .

Дифференциальные уравнения высших порядков.

    Дифференциальные уравнения, допускающие понижение порядка.

    Порядок дифференциального уравнения , которое не содержит искомой функции и ее производных до k-1 порядка, может быть понижен до n-k заменой .

    В этом случае , и исходное дифференциальное уравнение сведется к . После нахождения его решения p(x) останется вернуться к замене и определить неизвестную функцию y .

    Например, дифференциальное уравнение после замены станет уравнением с разделяющимися переменными , и его порядок с третьего понизится до первого.